Note on the Rainbow $k$-Connectivity of Regular Complete Bipartite Graphs
نویسندگان
چکیده
A path in an edge-colored graph G, where adjacent edges may be colored the same, is called a rainbow path if no two edges of the path are colored the same. For a κ-connected graph G and an integer k with 1 ≤ k ≤ κ, the rainbow kconnectivity rck(G) of G is defined as the minimum integer j for which there exists a j-edge-coloring of G such that any two distinct vertices of G are connected by k internally disjoint rainbow paths. Denote by Kr,r an r-regular complete bipartite graph. Chartrand et al. in “G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54(2009), 75-81” left an open question of determining an integer g(k) for which the rainbow k-connectivity of Kr,r is 3 for every integer r ≥ g(k). This short note is to solve this question by showing that rck(Kr,r) = 3 for every integer r ≥ 2k⌈ k 2⌉, where k ≥ 2 is a positive integer.
منابع مشابه
Complexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes
A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملFurther Hardness Results on Rainbow and Strong Rainbow Connectivity
A path in an edge-colored graph is rainbow if no two edges of it are colored the same. The graph is said to be rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph is strong rainbow connected. We consider the complexity of the problem of deciding if a given edge-colored graph is rainbow or stro...
متن کاملRainbow regular order of graphs
Assume that the vertex set of the complete graph Kt is Zt if t is odd and Zt−1 ∪ {∞} otherwise, with convention that x +∞ = 2x. If the color of any edge xy is defined to be x+ y then GKt stands for Kt together with the resulting edge coloring. Hence color classes are maximum matchings rotationally/cyclically generated if t is even/odd. A rainbow subgraph of GKt has all edges with distinct color...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 101 شماره
صفحات -
تاریخ انتشار 2011